

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/33

Paper 3 (Core)

May/June 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 19 printed pages and 1 blank page.

1 (a) Fig. 1.1 shows the human gas exchange system.

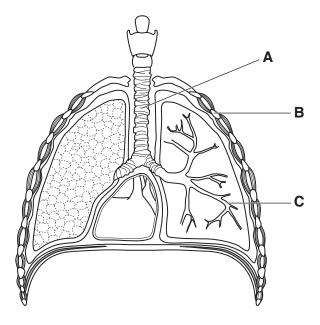


Fig. 1.1

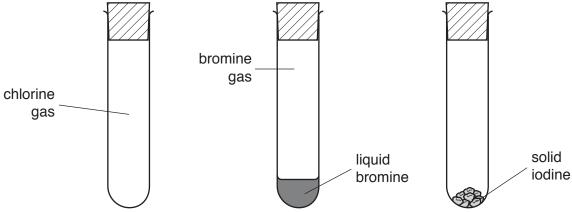
Name structures A, B and C as shown in Fig. 1.1.

Α	
В	
D	
C	
	[3]

(b) Table 1.1 shows some of the composition of inspired air and of expired air.

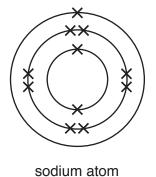
Table 1.1

	composition of air/%				
gas	inspired air (breathed in)	expired air (breathed out)			
carbon dioxide	0.04				
nitrogen	78	78			
oxygen	21	16			


[1]

In Table 1.1 write the percentage of carbon dioxide in expired air.

(c)	Oxygen enters the blood at the lungs.				
	(i)	Describe how oxygen is transported in the blood.			
		[2	2]		
	(ii)	Explain why all living cells need a supply of oxygen.			
		[2	2]		
(d)	Stat	te two ways in which the pattern of breathing changes during exercise.			
	1				
	2				
			2]		
		[Total: 10)]		


- 2 Chlorine, bromine, and iodine are Group VII elements.
 - (a) These three elements exist as molecules.

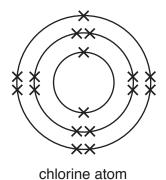

Fig. 2.1 shows the physical states of these elements.

	Fig. 2.1
(i)	Explain what is meant by the term <i>molecule</i> .
	Use ideas about atoms in your answer.
	[1]
(ii)	Name the change of state that occurs when liquid bromine turns into bromine gas.
	[1]
(iii)	State whether the change of state that occurs when liquid bromine turns into bromine gas is a physical change or a chemical change.
	Explain your answer.
	change
	explanation
	[1]
Sod	ium reacts with chlorine in an exothermic reaction.
	lium chloride, an ionic compound, is formed. This compound contains sodium ions and oride ions.
(i)	State what is meant by an exothermic reaction.
	[1]
	(iii) Sod

(ii) Fig. 2.2 shows the electronic structure of a sodium atom and of a chlorine atom.Complete Fig. 2.2 to show the electronic structure of a sodium ion and of a chloride ion.

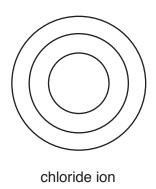


Fig. 2.2

[2]

[Total: 8]

[1]

3 Fig. 3.1 shows a boy in a swimming pool.

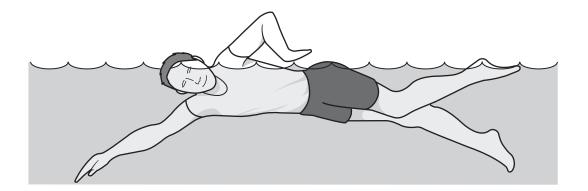


Fig. 3.1

The boy swims a length of the pool.

- (a) (i) On Fig. 3.1 draw an arrow to show the frictional force of water resistance on the boy. [1]
 - (ii) He exerts a force of 40 N to swim at constant speed.

State the value of the frictional force of water resistance.

Give a reason for your answer.

reason

[1]

(b) The boy swims at a speed of 0.80 m/s.

Calculate the time taken by the boy to swim 25 m at this speed.

Show your working.

time = s [2]

(c) Fig. 3.2 shows a speed–time graph for another swimmer.

Fig. 3.2

	Describe the motion of the swimmer between 10s and 40s.						
(d)	The time taken by the swimmer in (c) is measured by an electronic stop-clock. The stop-clock is stopped when the swimmer crosses a beam of infrared radiation. [2]						
	(i) Suggest one reason why X-rays would not be suitable for this purpose.						
	(ii) Fig. 3.3 shows the electromagnetic spectrum.On Fig. 3.3 write infrared radiation in its correct place in the spectrum.						
		X-rays		visible light			radio waves

Fig. 3.3

[1]

[Total: 8]

4 (a) Fig. 4.1 shows some leaves of the plant *Mimosa pudica*.

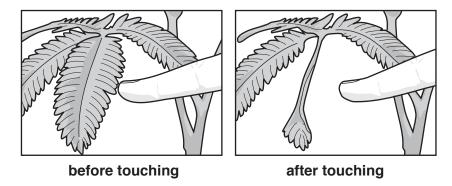
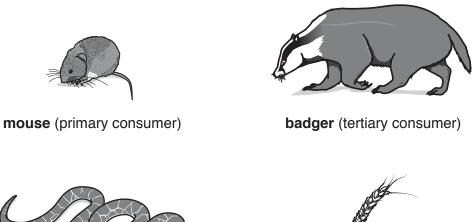



Fig. 4.1

When a person touches a leaf, the leaf closes within three seconds.

(i)	State which two characteristics of living things are being shown by the leaf after it is touched.
	1
	2[2]
(ii)	Predict how the rate of photosynthesis is affected by leaves showing the response in Fig. 4.1.
	Explain your answer.
	prediction
	explanation
	[1]

(b) (i) Fig. 4.2 shows some organisms found in a field.

snake (secondary consumer)

..

Fig. 4.2

Draw a food chain of the four organisms. You do not need to include the pictures.

			[2]
	(ii)	Name a carnivore and a herbivore from the organisms shown in (b)(i).	
		carnivore	
		herbivore	
			[2]
(c)	Sta	te the principal source of energy for the food chain you wrote in (b)(i).	
			[1]
			[Total: 8]

5	(a)	Cal	cium hydroxide, a base, is used to control the acidity of soil.
		(i)	Describe the effect of calcium hydroxide on the pH value of acid soil.
		(ii)	On Fig. 5.1 complete the word equation for the reaction between calcium hydroxide and dilute sulfuric acid.
			+ + water
			Fig. 5.1
			[2]
		(iii)	Describe the test for aqueous calcium ions, Ca ²⁺ .
			State the result that shows the presence of calcium ions.
			test
			result
			[2]
	(b)	A st	udent makes pure crystals of copper sulfate.
	()		e adds excess copper oxide powder to dilute sulfuric acid.
			ue solution of copper sulfate forms.
			Explain why excess copper oxide is used.
		(i)	
			[1]
		(ii)	Describe how she separates the unreacted copper oxide powder from the blue solution.
			[1]
		(iii)	State two processes that she uses to obtain crystals of copper sulfate from the blue solution.
			1
			2
			ι - .

[Total: 9]

BLANK PAGE

6	(a)	Complete	the	sentences	usina	words	from	the	lict
U	(a)	Complete	uic	30111011003	usiliy	words	110111	เมเษ	ΠOL.

Each word may be used once, more than once or not at all.

atoms	boils	evaporates	faster	molecules	slower	
On a warm	day, sea-wa	ater		as energy	from the Sun m	nakes
water		move			and escape	from
the surface.						[2]

(b) Fig. 6.1 shows a cylinder of compressed air (air at high pressure) used by scuba divers in the sea.

Fig. 6.1

The air at high pressure in the cylinder is at the same temperature as the air in the room.

Describe how the arrangement and movement of the gas molecules in the cylinder compares with the arrangement and movement of the gas molecules in air in the room.

arrangement	
movement	
	[2]

(c)	(i)	State the approximate lowest frequency of human hearing in air. Give the unit of your answer.
		frequency = unit [2]
	(ii)	Scuba divers are said to be able to hear sounds with a higher frequency underwater than humans can normally hear in air.
		Suggest a value for a frequency which a scuba diver might be able to hear underwater, but not in air.
		[1]

(d) Scuba divers use underwater torches (flashlights) when diving in caves.

Fig. 6.2 shows a design for an underwater torch (flashlight) to produce a parallel beam of light using a lamp and a converging lens of focal length 3 cm.

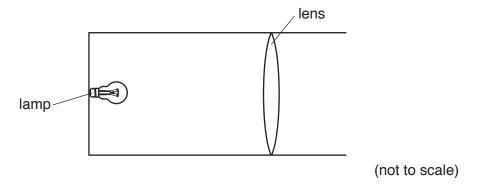
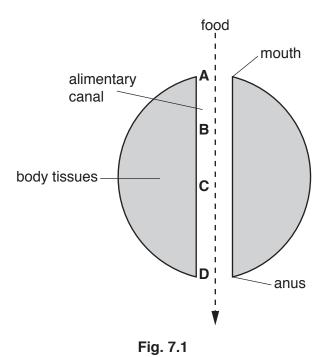


Fig. 6.2

(i)	State the	distance	that the	lens	should be	nlaced	from the	lamn
\ I /	Otate the	aistailee	mai me	10110	SHOUIG DO	Diacea	HOIH HIC	iaiib.


Give a reason for your answer.

distance =	cm	
reason		
		1 !

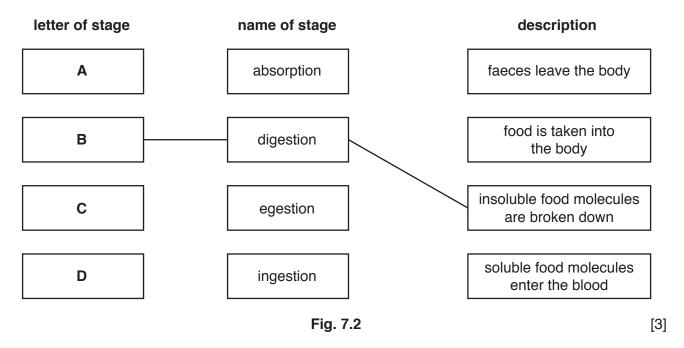
(ii) On Fig. 6.2, draw two rays to show how the lamp produces a parallel beam of light. [1]

[Total: 9]

7 (a) Fig. 7.1 is a simplified diagram which shows the human alimentary canal.

an Alaman ala Alama Iarah at Sarah arang mananda

The alimentary canal is a tube going through the body from mouth to anus. The tube is surrounded by body tissues.


The letters **A**, **B**, **C** and **D** show the basic stages of digestion of food.

On Fig. 7.2 the boxes on the left show the letters of the stages of digestion of food as shown in Fig. 7.1.

The boxes in the middle show the names of these stages.

The boxes on the right show descriptions of what is happening to the food.

Draw **one** line to link each letter with its stage, and draw **one** line to link each stage with its description. Stage **B**, digestion, is done for you.

(b)	Des	scribe the function of the gall bladder.	
(c)	(i)	State what is meant by the term <i>balanced diet</i> for humans.	
	(ii)	State why proteins are needed as part of a balanced diet.	
			[1]
	(iii)	Describe the chemical test for protein, and the colour of the positive result.	
		chemical test	
		colour of positive result	
			[2]

[Total: 9]

(a)	Wh	en zinc oxide is heated with carbon, zinc and carbon dioxide are formed.
	(i)	State the type of chemical reaction that occurs when zinc loses oxygen.
		[1
	(ii)	Suggest one effect on the reaction between zinc oxide and carbon of using a lowe temperature.
		[1
	(iii)	Explain why argon, a Group VIII gas, does not react with zinc oxide.
		[1
(b)	Wh	en aluminium oxide is heated with carbon, there is no reaction.
	Exp	plain why aluminium oxide does not react with carbon.
	Use	e ideas about the reactivity series in your answer.
		[1
(c)	(i)	Name the ore from which aluminium is extracted.
		[1
	(ii)	State the method used to extract aluminium.
		[1
(d)	Iron	is a transition element.
	Soc	lium is a Group I element.
		scribe one difference and one similarity between the physical properties of iron and o ium.
	diffe	erence
	eim	
	51111	ilarity
		[2

8

(e)	Recycled metals can cost less than metals extracted from their ores.
	Suggest one other reason why metals are recycled.
	[1]
	[Total: 9]

9 Fig. 9.1 shows an electricity line supplying a voltage of 11 000 V.

Fig. 9.2 shows a battery which supplies a voltage of 24 V.

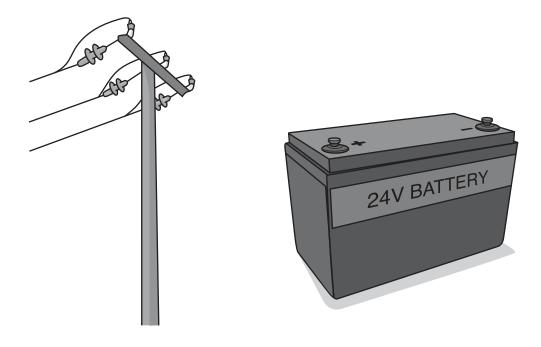


Fig. 9.1 Fig. 9.2

- (a) The electricity supply line has a warning notice about the 11 000 V, but there is no warning on the 24 V battery.
 - (i) State the electromotive force (e.m.f.) of the battery.

emf=	[1]
2 m 1 –	

(ii) Suggest why the electricity supply line has a warning notice, but the battery does not.

.....[

(b)	A man's hand touches a live electric cable at a voltage of 240 V. A current of 0.0050 A flows
	through his body to the ground, and he receives an electric shock.

(i)	Calculate the electrical resistance of the man's body

Show	your	working.
------	------	----------

	resistance = Ω [2]
(ii)	Explain why he might not have received a shock if he had been wearing rubber gloves.
	[1]

(c) The battery in Fig. 9.2 is used to power two lamps and an electric motor that drives a vehicle.

The vehicle can be driven by the motor without switching on the lamps.

Fig. 9.3 shows part of the circuit in the vehicle.

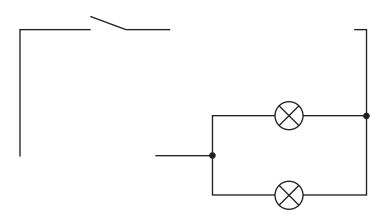


Fig. 9.3

Complete the circuit by adding the correct symbols and connecting wires for:

- the battery
- an electric motor with a switch to control the motor only
- a switch that will turn both lamps on and off but not affect the motor.

The symbol for an electric motor is — M

[4]

[Total: 10]

The Periodic Table of Elements

	=	2	Не	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
	II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	¥	astatine -			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium –	116		livermorium -
					7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	: <u>.</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	В	lead 207	114	F1	flerovium
	=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	р О	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
dn											28	Z	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
					•						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						pol	ass				24	ဝ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	СP	dubnium –
						ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
								•			21	လွ	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	88	လွ	strontium 88	26	Ba	barium 137	88	Ra	radium
	_				3		lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	<u>μ</u>	francium

r ₁	lutetium 175	103	۲	lawrencium	I
V ₀				_	
e9 L	thulium 169	101	Md	mendelevium	1
68 F	erbium 167	100	Fm	ferminm	_
67 Ho	holmium 165	66	Es	einsteinium	1
% Dy	dysprosium 163	86	ŭ	californium	1
65 Tb	terbium 159	26	益	berkelium	1
64 Gd	gadolinium 157	96	Cm	curium	_
63 Eu	europium 152	92	Am	americium	_
62 Sm	samarium 150	94	Pu	plutonium	_
Pm	promethium -	93	ď	neptunium	1
09 PX	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
S8 Ce	cerium 140	06	T	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.